

LA-UR-14-27976

Approved for public release; distribution is unlimited.

Title: Relativistic Magnetic Reconnection: A Powerful Cosmic Particle

Accelerator

Author(s): Guo, Fan

Intended for: seminar in Physics and Astronomy Department, Purdue University

Issued: 2014-10-13

Relativistic Magnetic Reconnection: A Powerful Cosmic Particle Accelerator

Fan Guo
Theoretical Division
Los Alamos National Laboratory

Collaborators: Hui Li, Bill Daughton (LANL)
Yi-Hsin Liu (NASA Goddard)
Wei Deng (UNLV)

Department of Physics and Astronomy, Purdue University October, 6th 2014

Magnetic Reconnection & Associated Particle Acceleration

Where does reconnection occur?

- Planetary magnetosphere, solar flares
- Active galactic nuclei (AGN), Gamma-ray bursts (GRBs), Pulsar wind nebulae (PWNs)

Particle Acceleration: Hints from solar flares

- Power-law distribution
- Most of electrons are accelerated

 $N_{nonthermal} > N_{thermal}$ (e.g., Krucker et al. 2010) This is not well understood.

This talk:

- Strong particle acceleration in relativistic reconnection with hard power-law index p~1.
- Power-law formation model including relativistic Fermi acceleration and injection.

Extreme Acceleration/Radiation in AGNs, GRBs, and PWNs

In magnetically dominated model

$$\sigma = \frac{B^2}{4\pi nmc^2} \gg 1$$

Hard Spectra

Krennrich et al. 2008

Extreme Acceleration/Radiation in AGNs, GRBs, and PWNs

• GRB Band function (Band et al. 1993) Low energy power law $N_E \sim E^{-1}$

Indicating particle spectral index p = (s+1)/2 = 1, whereas shocks give p = 2

Magnetically dominated model ($\sigma >> 1$):

- require a highly efficient energy dissipation
- require an efficient production of energetic particles.

(Lyutikov 2003; Zhang & Yan 2011; McKinney & Uzdensky 2012)

 $\sigma_{\text{tot}} \leq 1$

Collision of two magnetically dominated blobs: 3D Relativistic MHD simulations

Extreme Acceleration/Radiation in AGNs, GRBs, and PWNs superflares: extreme particle acceleration

σ-problem: fast magnetic dissipation

Porth et al. 2013

Large-scale field reversal Lynden-Bell et al. 96 Li et al. 06

Blob collision

Deng et al. 2014 in preparation

Clausen-Brown & Lyutikov

A general local geometry

Look into details ...

Focusing on a local reconnection site with $\sigma >> 1$

- Strong particle acceleration and formation of hard power laws $dN/d\gamma = \gamma^{-p}$, p~1.
- Acceleration mechanism: first-order relativistic Fermi process
- Power-law model and formation condition ($\tau_{acc} < \tau_{inj}$).
- Properties of relativistic magnetic reconnection:
 Relativistic inflow and outflow
 Reconnection rate is enhanced because of relativistic effect.

Guo, F. et al. PRL in press Arxiv: 1405:4040

Phase diagram for magnetic reconnection

Ji & Daughton 2011

Particle-in-cell Kinetic Simulations

Relativistic particle motions

Maxwell equations

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{q_s}{m_s} \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \frac{\partial f_s}{\partial \mathbf{p}} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$
 $\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$

$$\nabla \cdot \mathbf{E} = 4\pi \rho \quad \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

- First-principle kinetic description
- **X** Expensive for large scales

Use LANL's VPIC on supercomputers (Blue Waters, Titan, etc.)

Initial Setup & Parameters

• Initial configuration:

Force-free current sheet (e.g., Che et al. 2011; Liu et al. 2013)

• Magnetic energy dominant initially $E_B >> E_k$

$$\sigma = \frac{B_0^2}{4\pi n_0 m_e c^2} = (\frac{\omega_{ce0}}{\omega_{pe0}})^2 >> 1$$

• Pair plasma $(m_i/m_e = 1)$ initially, $E_{the} = E_{thi} = 0.36 mc^2$

$$2D: \sigma = 1-1600$$

$$L_x \times L_z = 300d_i \times 194d_i \quad 600d_i \times 388d_i$$

 $1200d_i \times 776d_i$

3D: σ up to 100

$$L_x \times L_z \times L_y = 300d_i \times 194d_i \times 300d_i$$

Boundaries for fields: x - periodic
z - conducting
y - periodic (3D)

Boundaries for particles: x - periodic
z - reflection
y - periodic (3D)

No guide field: bg = 0

Initial perturbation (GEM challenge)

~1.4 trillion particles and 2048³ grids on Blue Waters

2D current density (σ =100) $\omega_{pe}t$ =0 - 700

 $t\omega_{pe} = 60$

Current-density structure in 2D and 3D (σ =100)

Energy evolution from 2D and 3D PIC simulations

Magnetic energy is rapidly converted into relativistic plasmas. 3D & 2D results are surprisingly similar.

Energy spectra from 2D and 3D PIC simulations

Shock vs Reconnection

Shock heating dominant

Thermal distribution contains most of kinetic energy

The accelerated power-law tail contains most of kinetic energy.

Fermi Acceleration Pattern

Ist order Fermi mechanism

- Acceleration by "collision" in between moving magnetic clouds (Fermi 1949)

$$\Delta E = \gamma_V^2 E (1 + 2Vv_x / c^2 + (V/c)^2)$$
$$\Delta t = L/v_x$$

- In collisionless plasma $E \sim -VxB/c$
- In the case of reconnection generated plasmoids/flux tubes, the Fermi process is accomplished by curvature drift motion in plasmoids along the motional electric field induced by plasma flows.

Type-B Fermi process (Fermi 1949)
Drake et al. 2006, 2010; Birn et al. 2012
Guo et al. 2014

The acceleration is dominated by curvature drift motion in reconnecting electric field

Fermi acceleration is facilitated by curvature drift motion in electric field induced by relativistic flow

$$\Delta E = \gamma_V^2 E (1 + 2Vv_x / c^2 + (V/c)^2)$$
$$\Delta t = L/v_x$$

Why power law?

Drake et al. (06, 10, 13)

No power laws in a close system? Really need loss term?

Sironi & Spitkovsky 14; Melazani et al. 14 A part of the particles in the system show power-law distribution.

What is the acceleration mechanism?

How does the power law form?

Formation of power laws (Fermi 1949)

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial \varepsilon} (\frac{\partial \varepsilon}{\partial t} f) = -\frac{f}{\tau_{esc}}$$

$$\frac{\partial}{\partial \varepsilon}(\alpha \varepsilon f) = -\frac{f}{\tau_{esc}} \qquad f \propto \varepsilon^{-(1+1/\alpha \tau_{esc})}$$

A closed system

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial \varepsilon} \left(\frac{\partial \varepsilon}{\partial t} f \right) = 0$$

$$f_0 = \frac{2}{\sqrt{\pi}}\sqrt{\varepsilon}\exp(-\varepsilon)$$
 $\mathcal{E}=mc^2(\gamma-1)/kT$

Assuming $\alpha = \partial \mathcal{E}/\partial t/E$, $\frac{df}{dt} + \alpha f = 0$ solution after time t:

$$f = \frac{2}{\sqrt{\pi}} \sqrt{\varepsilon} e^{-3\alpha t/2} exp(-\varepsilon e^{-\alpha t}) \qquad \text{Just T} \to \text{Te}^{\alpha t}$$

Consider escape

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial \varepsilon} (\frac{\partial \varepsilon}{\partial t} f) = -\frac{f}{\tau_{esc}}$$

$$\frac{df}{dt} + \alpha f = -\frac{f}{\tau_{esc}}$$

Have the same solution $\int ust T \rightarrow Te^{(\alpha+1/\tau_{esc})t}$

Power-law formation

Two important ingredients: inflow (injection) + Fermi acceleration

Periodic (closed) systems will give spectral index p=1. Open boundary simulations show that energy spectra remain hard (~-1) for high- σ case, but softer for lower σ .

Power-law formation condition

$\alpha \tau_{\rm inj} > 1$

This can easily be met in relativistic reconnection, even in kinetic scales!

Key results

- Fast reconnection and strong particle acceleration during magnetic reconnection in high-σ regime.
- Enhanced reconnection rate in relativistic regime. 2D and 3D give about the same rate.
- Efficient energy conversion and particle acceleration (nonthermal dominant)
- Dominant acceleration mechanism: first-order Fermi acceleration. 3D results are remarkably similar to 2D.
- Formation of power laws: requires both Fermi acceleration and continuous inflow. Power-law formation condition: $\alpha \tau_{inj} > 1$.

Apply to high-energy astrophysics:

- Efficient energy conversion and strong particle acceleration (brighten the system in high-energy wavelengths)
- Hard power laws (close to "-I") in high-σ regime
- Fast power-law formation (fast variability)
- Relativistic inflow/outflow.

Magnetic Reconnection Rate: Determine Erec

Reconnection rate is enhanced in relativistic reconnection (Blackman & Field 94, Lyutikov & Uzdensky 03)

Stay nonrelativistic rate (Lyubarsky 05)

This study:

The rate is enhanced due to relativistic effect (Liu et al. 14 to be submitted)

2D and 3D simulations give the same rate. (Guo et al. PRL 14;

Guo et al. 14 in preparation)

Global rate changes ~10 times: $E_{rec} = 0.03 B_0 \longrightarrow 0.3 B_0$

Plasma flows associated with reconnection

(Liu, Y., GF et al. 14 in preparation)

Energy conversion in the 3D simulation

$$\Omega_{ce}t = 2550$$

$$J \cdot E$$

Isosurface of current density colored by J.E

Typical spatial scale di = 5e5 Gamma $ne^{(1/2)}$ cm and time scale t = 1/wpe = 2e-5 $ne^{(-1/2)}$ s

Magnetic Reconnection Rate

- Lots of secondary islands/3D filamentary structures
- The rate is enhanced due to relativistic inflow/outflow.

 Current sheet aspect ratio remains ~0. I

nonrelativistic
$$R \sim \frac{\delta_i}{L_i} \frac{v_{i,out}}{V_{Ax}} \sim \frac{\delta_i}{L_i} \sim 0.1$$

relativistic
$$R = \frac{\delta}{L} \sqrt{\frac{1+\sigma}{1+(\delta/L)^2\sigma}}$$

Global rate changes ~10 times:

$$E_{rec} = 0.03 B_0 \longrightarrow 0.3 B_0$$

Yi-Hsin Liu et al. (2014 in preparation)

Magnetic Reconnection Rate 2D vs 3D

The same technique is used for relativistic reconnection

2D and 3D gives similar rate, consistent with nonrelativistic results

The full solution that includes initial current sheet particles

This explains our simulations well, and is consistent with simulations by Sironi & Spitkovsky 14 and Melzani et al. 14, who used pressure balanced layer.